

# **HVDC-VSC** Newsletter

## November 2022



### Technology Outlook p2

Synchronous power-train of Type 5 wind turbine

#### **News** p3-4

European HVDC-WISE project at SuperGrid Institute National Grid ESO Holistic Network Design 1.3 GW Dogger Bank D planned New Jersey State Agreement Approach for offshore wind 8.4 GW of offshore wind by 2040 target for ISO-NE states

#### Projects update p5-6

EuroAsia Interconnector enters its construction phase NeuConnect cable production starts North Sea Link in normal operation France-Italy first 600 MW link in service

#### **Recent papers** p6-10

A monthly list of research papers published

### HVDC-VSC project list p11-20

**Operational systems** Future projects (details subject to change)

#### Contributions

Thank you to Geoff Henderson (SyncWind Power Ltd) for his contribution.

#### Corrections

As a correction to the last month's newsletter HVDC-VSC project list:

DolWin4 and BorWin4 HVDC converters are manufactured by Siemens Energy and not by Hitachi Energy as was written in error in last month's HVDC-VSC project list. Thank you to Dijana Cof (Hitachi Energy) and Benjamin Hinrichs (Siemens Energy) for bringing this to our attention.

Please also note that the North Sea Link cable has a DC voltage of  $\pm 515$  kV and not ±525 kV as was written in error.

For any comments and feedback, we kindly invite you to reach out to us via: HVDC@rte-international.com

**Power Electronics & Studies department** 

Subscribe to RTEi's HVDC newsletter here.

Editor: Markus Vor dem Berge; Author: Robin Lemaire; Design: Camille Noguès; Reviewers: Sébastien Dennetière, Alice Bacon; Contributor: Hani Saad

## **Technology outlook**

## Synchronous power-train of Type 5 wind turbine

Geoff Henderson, Vahan Gevorgian, "Type 5 wind turbine technology : how sychronised, synchronous generation avoids uncertainties about inverter interoperability under IEEE 2800:2022", 21<sup>st</sup> Wind & Solar Integration Workshop, 2022

A proven Type 5 (synchronous) wind turbine exists and over 100 units have been running at 0.5 MW scale in a 46 MW wind farm in New Zealand since 2006 and eight turbines in since 2013. Scotland The U.S. National Renewable Energy Laboratory (NREL) is conducting a study on the impacts on grid reliability, stability and resilience of Type 5 wind turbines. The project consists of both simulation and testing tasks and will result in proposing a variable generation solution that will help system operators and utilities address all reliability and most resilience challenges in the evolving grid.

#### Offshore wind farm connection model

The PSCAD model used is a 1 GW offshore wind power plant HVAC-interconnected to onshore grid using a 50 km of 230 kV transmission with SCR = 3 at the onshore Point Of Interconnection (POI). 250 MVAR of shunt compensation is used in both sending and receiving ends of the submarine cable.

Three cases are simulated. The first two cases use a grid-following (GFL) Type 4 wind turbine while the third case uses a Type 5 wind turbine. The plant is exposed to a single phase to ground 200 ms fault at the POI upstream of the onshore substation transformer.

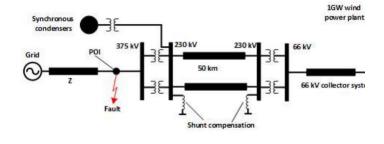



Figure 1: Modelled system

#### Results


In the first case, the plant rides through the fault but recovery from the transient is accompanied by significant voltage and current transients at the POI despite the wind turbines at the sending end not seeing such significant transients. The reason for such severe transient behaviour at the POI is because of weak POI (SCR=3) in combination with the impedance characteristics of the transmission line and shunt compensation.

In the second case, synchronous condensers (200 MVAR total) are connected to the onshore POI with being exposed to the same fault. The results show that synchronous condensers have significant mitigating impact on voltage and current transients. Synchronous condensers are operating in voltage control mode improving voltage stability at the POI, and at the same time helping to increase the SCR of POI.

The third case with Type 5 offshore wind power plant demonstrates fault ride-through without significant overvoltage and fast recovery compared to the GFL Type 4 case.

RMS voltage at the 230 kV POI bus for all three cases is compared as a function of SCR. The mitigating effect of synchronous condensers on voltage stability of the GFL Type 4 wind plant is obvious by comparing traces for cases 1 and 2. The Type 5 wind power plant demonstrates stable operation for very low SCRs without synchronous condensers.





The NREL project is now in the modelling stage to characterize the performance of Type 5 turbines under various conditions including faultride through.

#### Summary of type 5 system

- Eliminates the inverter rated at 40-100% of turbine power in Type 3 and 4 turbines
- Instead uses a mechanically Variable Speed (VS) gearbox which includes a differential stage and adds some hydraulics rated at only 5% of turbine power, in order to keep the power-train cost less than that of a Type 3 turbine

- Originally provided only narrow-band VS (torque-limiting) capability, but has recently been enhanced to provide also broad-band VS (the patented LVS system)
- Is readily scalable to multi-megawatt turbines (1-20 MW) by modifying the 3-stage gearbox architecture for a 4-pole DFIG generator, which remains the most common drive-train in the wind industry
- Has demonstrated its ability to act as a synchronous condenser for steady reactive power support (even when the wind is not blowing)
- Has demonstrated its ability for islanded (i.e. black-start) operation
- Has demonstrated its ability for frequency control using a combination of: very fast hydraulic control of reaction torques, with large rotor inertia to limit turbine speed excursions

## News

### **HVDC-WISE** project

## European HVDC-WISE project at SuperGrid Institute

The HVDC-WISE project officially began on the 10<sup>th</sup> of October 2022 with a kick-off meeting which brought together all project partners in Lyon (France). The meeting was hosted by the project coordinator, SuperGrid Institute. This new European project – part of the Horizon Europe 21-22 framework – will foster the development of large HVDC-based transmission grid infrastructures, to improve the resilience and reliability of existing electrical systems and facilitate the integration of forthcoming large amounts of renewable energy [1].

More information about the objectives of the project can be found here [2].

#### **Reference:**

- 1. <u>https://www.supergrid-</u> institute.com/2022/10/18/supergrid-institutecoordinator-european-project-hvdc-wise/
- 2. https://cordis.europa.eu/project/id/101075424/fr

# UK offshore wind plan to 2030

#### National Grid ESO Holistic Network Design

In July 2022, the National Grid ESO published the 2030 Holistic Network Design (HND), a study that sets out the UK network requirements to facilitate the connection of 23 GW of offshore wind projects. Combining existing and developing offshore wind projects, the HND should enable meeting the U.K. government's further goal of connecting 50 GW of offshore wind by 2030 [3].

The study recommends HVDC technology for most offshore wind farm connections (shown in blue lines on the following map) and for offshore grid reinforcement (shown in green lines). Other HVDC links are also considered on a regional scale, in particular in the form of multi-terminal DC offshore.

This report is the result of the HND phase 1. A second phase will be concluded in the first half of 2023.

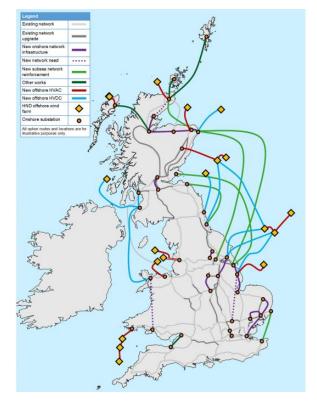



Figure 3: Final HND GB Map. <u>Credit</u>: National Grid ESO

For more details, see the webpage [3] with its interactive map and the Pathway 2030 report.

#### **Reference:**

3. <u>https://www.nationalgrideso.com/future-energy/the-pathway-2030-holistic-network-design</u>

## **EU offshore wind**

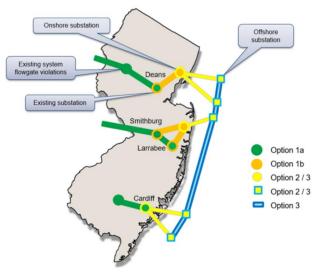
#### 1.3 GW Dogger Bank D planned

There seems to be further development in the Dogger Bank area. A spokesperson told OffshoreWind.biz: "SSE Renewables and Equinor are currently assessing seabed for the potential of expanding Dogger Bank Wind Farm, which is currently under construction, with an additional phase, Dogger Bank D. The potential project is supported by a grid connection for up to 1320 MW" [4].

#### **Reference:**

<u>https://www.offshorewind.biz/2022/10/06/breaking-sse-equinor-plan-1-3-gw-dogger-bank-d-offshore-wind-project/#dogger-bank-gigawatts</u>

### **New Jersey offshore wind**


## New Jersey State Agreement Approach for offshore wind

As a first news story for New Jersey, the governor announced last month the **increase of the state's offshore wind goal** from 7,500 MW by 2035 to **11,000 MW by 2040**. In addition, the New Jersey Board of Public Utilities (BPU) is also in charge of studying the possibility of further increasing the target [5].

As a second news story, the New Jersey Board of Public Utilities (NJBPU) has just **published the Evaluation Report on its State Agreement Approach (SAA)** for the selection of developers to connect offshore wind farms [6].

To provide some context, the regional TSO, PJM Interconnection LLC, launched solicitations and has already awarded the connection of the 3 offshore wind farms: Ocean Wind 1 (1,100 MW) in a first solicitation, and Atlantic Shores 1 (1,510 MW) and Ocean Wind 2 (1,148 MW) in a second one.

In 2021, a third solicitation was launched. The NJBPU evaluated the proposals received in response to the solicitation of offshore wind transmission solutions under the State Agreement Approach (SAA). The aim of this approach is to reduce costs and risks of delay. The SAA solicitation defined several scopes to which the transmission developers could respond: (1a) the reinforcement of the existing onshore grid, (1b) the construction of new onshore facilities, (2) the construction of the connection from onshore facilities to the offshore wind farms, (3) the construction of transmission links between the offshore substations.



*Figure 4: Illustrative offshore wind transmission layouts.* <u>*Credit: PJM [7]*</u>

The NJBPU announced in October the selection for Option 1b of the Larrabee Tri-Collector Solution (LTCS) proposed by Mid-Atlantic Offshore Development (MAOD) and Jersey Central Power & Light Company [6].

The Evaluation Report details the SAA methodology here [7].

#### **Reference:**

- 5. <u>https://nj.gov/governor/news/news/562022/approve</u> <u>d/20220921a.shtml</u>
- 6. <u>https://nj.gov/bpu/newsroom/2022/approved/20221</u> 026.html
- 7. https://lnkd.in/drNqPp5b

### **ISO-NE state offshore wind**

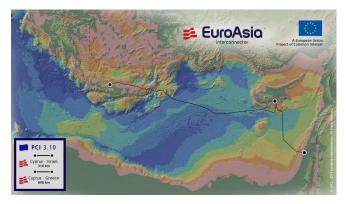
## 8.4 GW of offshore wind by 2040 target for ISO-NE states

Five New England states issued a Request For Information (RFI) on the development of thousands of megawatts of new transmission needed over the next 20 years to connect offshore wind farms and other clean energy resources [8].

The RFI outlines a "**modular**" framework, stating that the right solution will be "scalable, cost-effective, and flexible to accommodate up to 8.4 GW of current and future New England leaseholds." Solutions are expected to come operational with increments of 1.2 GW by 2040 [8].

The states are actively considering **HVDC solutions** in their offshore wind integration plan

with some parameters already shown in the exhibit 1 of the document here [9].


#### **Reference:**

- <u>https://www.utilitydive.com/news/5-new-england-states-propose-modular-transmission-plan-to-incorporate-84/631199/</u>
- 9. https://newenglandenergyvision.files.wordpress.com /2022/09/transmission-rfi-notice-of-proceeding-andscoping.pdf

## Links in development

## **EuroAsia Interconnector enters its construction phase**

On the 14<sup>th</sup> of October 2022 in Nicosia, Cyprus, an official ceremony announced the launch of the construction of the EuroAsia interconnector [1010]. The interconnector is a 1,000 MW HVDC VSC multi-terminal project connecting the grids of Greece, Cyprus and Israel. It includes three converter stations connected by a 1,200 km submarine cable. The first phase will connect Cyprus to Greece, while the second phase will connect Cyprus to Israel. Completion is scheduled for the end of 2026. Once commissioned, it will be the deepest and longest submarine electricity interconnection in the world. Preferred bidders were selected for the first phase: Siemens Energy was announced in 2020 for the converters [11] and Nexans was announced in 2022 for the supply of the cables [12].



*Figure 5: EuroAsia Interconnector route. <u>Credit</u>: <i>EuroAsia Interconnector* 

#### Fast facts:

- 3 x 1,000 MW HVDC-VSC converters stations
- Bipole scheme with sea-electrode
- 1,208 km long ±500 kV DC submarine cable:
  310 km from Cyprus to Israel;
  - 898 km from Cyprus to Greece.

#### **Reference:**

- 10.<u>https://ec.europa.eu/info/news/commission-</u> participates-launch-euroasia-electricityinterconnector-2022-oct-14\_en
- 11.<u>https://euroasia-</u> interconnector.com/preferredbidder/
- 12. https://www.nexans.com/en/newsroom/news/details /2022/07/nexans-selected-as-preferred-bidder-foreuroasia-interconnector.html

#### **NeuConnect cable production starts**

The NeuConnect Interconnector between the UK and Germany is a 1,400 MW HVDC-VSC project of around 725 km of land and submarine cables. It has been announced that the Prysmian Group has **started production of the cable** ahead of major construction work to begin in 2023 [13]. The project NeuConnect reached Financial Close in July 2022.

#### **Reference:**

13.<u>https://neuconnect-interconnector.com/cabling-production-starts-on-neuconnect-in-important-</u> milestone-for-first-ever-uk-german-energy-link/

## Links in operation

#### North Sea Link in normal operation

The North Sea Link (NSL) interconnector between UK and Norway is now in **normal operation** after a year of trial operation since the October 1<sup>st</sup>, 2021 [14].

The 1,400 MW HVDC VSC link is the world's longest interconnector in VSC technology with a  $\pm$ 525 kV DC cable of 720 km undersea. This project allows Norway to import wind power from the UK and the UK to import hydropower from Norway.

During the year of trial operation 4.6 TWh was exported from Norway to the UK, while imports from the UK to Norway was 1.1 TWh [15].



Figure 6: North Sea Link. Credit: Hitachi Energy

#### **Reference:**

- 14. https://www.statnett.no/en/about-statnett/newsand-press-releases/news-archive-2022/nslinterconnector-between-uk-and-norway-in-regularoperation/
- 15.<u>https://www.offshore-energy.biz/north-sea-link-begins-regular-operations/</u>

#### France-Italy first 600 MW link in service

The Savoie-Piémont HVDC interconnection became **partially operational** on November 7<sup>th</sup>, 2022, after seven years of work. It has been announced by RTE, the French transmission system operator. [16] This interconnection is composed of 2 VSC-HVDC links in symmetrical monopole topology at a total rating of 1200 MW. The first link of 600 MW has been put in service. The 2<sup>nd</sup> link is expected to be in full operation in 2023 [17].

#### **References:**

- 16.<u>https://www.rte-france.com/actualites/mise-service-partielle-interconnexion-electrique-france-italie-savoie-piemont</u>
- 17. https://www.rte-france.com/en/projects/savoiepiemont-190-km-of-european-solidarity-fromchambery-to-turin#Theproject

## **Recent papers**

#### **Book**

Davide del Giudice, Federico Bizzarri, Daniele Linaro, Angelo Maurizio Brambilla, "Modular Multilevel Converter Modelling and Simulation for HVDC Systems, State of the Art and a Novel Approach", Springer Cham, 2023, https://doi.org/10.1007/978-3-031-12818-9

### Conferences

#### 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe)

- Abdalrahman, Y. -J. Häfner, P. Maibach and C. Haederli, "A Way Forward to Achieve Interoperability in Multi-Vendor HVDC Systems," 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. 1-10.
- Schön, A. Lorenz and R. A. A. Valenzuela, "Impedance-based analysis of HVDC converter control for robust stability in AC power systems," 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. 1-11.
- 3. P. Briff and A. Kumar, "A Novel Combined Control of Ground Current and DC-pole-to-Ground Voltage in Symmetrical Monopole Modular Multilevel Converters for HVDC Applications,"

2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. 1-8.

- 4. J. D. Páez, F. Morel, S. Bacha and P. Dworakowski, "Fault blocking capability in the DC-MMC with reduced number of sub-modules," 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. 1-10.
- Boutry, C. Buttay, B. Asllani, B. Lefebvre, E. Vagnon and D. Dong, "Experimental study of the reduction and removal of turn-on snubber for IGCT based MMC submodule using fast silicon diodes," 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. P.1-P.11.
- D. Velazco, G. Clerc, E. Boutleux and F. Wallart, "Comparison of Redundancy Requirements for Modular Multilevel Converter Considering Manufacturer Reliability Inputs and Mission Profile," 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. 1-10.
- Z. Blatsi, S. Neira, S. Finney and M. M. C. Merlin, "Comparative Evaluation of Partially-Rated Energy Storage Integration Topologies for High Voltage Modular Multilevel Converters," 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. 1-9.
- Hakkila, A. Antonopoulos and P. Karamanakos, "A Direct Model Predictive Control Strategy of Back-to-Back Modular Multilevel Converters Using Arm Energy Estimation," 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. 1-10.
- X. Xiao, S. Choudhury, M. Coumont and J. Hanson, "Enabling large-scaled MMC EMT-RMS cosimulation by data exchange in the loop (DXiL)," 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. 1-9.
- 10.N. Tashakor, B. Arabsalmanabadi, E. Hosseini, K. Al-Haddad and S. Goetz, "Estimation of Battery Parameters in Cascaded Half-Bridge Converters with Reduced Voltage Sensors," 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. 1-11.
- 11.Nami, A. Abdalrahman, Y. -J. Häfner, M. K. Sahu and K. K. Nayak, "DC-side Impedance for Handling Interoperability of Multi-vendor Multi-terminal HVDC Systems," 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. 1-9.
- 12.Junghans and H. -G. Eckel, "A novel parameter for the evaluation of protective circuits for IGBT explosion protection in submodules of MMC," 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), 2022, pp. 1-10.

#### IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)

13.D. A. Montoya-Acevedo, A. Escobar-Mejía and M. Holguin-Londoño, "Design and Implementation of a Resonant Controller to Balance the Capacitor Voltage on a HVDC Terminal Based on MMC," 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2022, pp. 1-5, doi: 10.1109/PEDG54999.2022.9923209.

- 14.Z. Zhang and X. Zhao, "Control of HVDC-Connected PMSG-Based Wind Turbines for Power System Oscillation Damping," 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2022, pp. 1-6, doi: 10.1109/PEDG54999.2022.9923123.
- 15.J. V. Matos Farias, L. Camurça, M. Langwasser and M. Liserre, "An analysis of combining dc circuit breaker and hybrid MMC with reduced number of FBSM for HVdc system protection," 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2022, pp. 1-5, doi: 10.1109/PEDG54999.2022.9923137.

#### 2022 IEEE 16th International Conference on Compatibility, Power Electronics, and Power Engineering (CPE-POWERENG)

- 16.E. Avdiaj, J. A. Suul, S. D'Arco and L. Piegari, "Adaptive Filtering for Energy Control of a Modular Multilevel Converter Operated as a Virtual Synchronous Machine Under Unbalanced Conditions," 2022 IEEE 16th International Conference on Compatibility, Power Electronics, and Power Engineering (CPE-POWERENG), 2022, pp. 1-8, doi: 10.1109/CPE-POWERENG54966.2022.9880890.
- 17.M. Barresi, E. Ferri and L. Piegari, "An MMC-based Fully Modular Ultra-Fast Charging Station Integrating a Battery Energy Storage System," 2022 IEEE 16th International Conference on Compatibility, Power Electronics, and Power Engineering (CPE-POWERENG), 2022, pp. 1-8, doi: 10.1109/CPE-POWERENG54966.2022.9880885.

#### 2022 IEEE International Conference on Power Systems Technology (POWERCON)

- 18.Y. Li, Y. Zhu, C. Liu, L. Yang, W. Wang and G. Pang, "Digital-Analog Hybrid Simulation of Renewable Energy Sent to Large-Scale AC Power Grid through Zhangbei VSC-HVDC System," 2022 IEEE International Conference on Power Systems Technology (POWERCON), 2022, pp. 1-6, doi: 10.1109/POWERCON53406.2022.9929769.
- 19.L. F. da Rocha, H. A. Faraasen, H. Vansompel and P. K. Olsen, "Investigation of Power Electronics Converters and Architecture for Modular HVDC Wind Generators," 2022 IEEE International Conference on Power Systems Technology (POWERCON), 2022, pp. 1-6, doi: 10.1109/POWERCON53406.2022.9930011.
- 20.S. Choudhury, Q. E. Bonet, X. Xiao and J. Hanson, "Influence of DC Network Structure on the Optimal Power Flow of Hybrid AC-DC Transmission Grids," 2022 IEEE International Conference on Power Systems Technology (POWERCON), 2022, pp. 1-6, doi: 10.1109/POWERCON53406.2022.9929593.
- 21.X. Xiong, J. Li, L. Zhao and Y. Jiang, "A design method for sub-synchronous oscillation stability analysis and damping control generated by wind

**power through soft straight grid connection**," 2022 IEEE International Conference on Power Systems Technology (POWERCON), 2022, pp. 1-6, doi: 10.1109/POWERCON53406.2022.9929966.

#### **Other conferences**

- 22.H. Hosseinpour and A. Rezaei-Zare, "Operation of MMC-Based VSC-HVDC Under System Disturbance," Geomagnetic 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Furope). 2022. 1-5. pp. doi 10.1109/EEEIC/ICPSEurope54979.2022.9854757.
- 23.Taneja, R. Saha and M. Singh, "Influence of DC Voltage and Frequency Droop on Active Power Support Capability in Dual-Droop Controlled VSC-MTDC-based AC-DC Grid," 2022 IEEE Region 10 Symposium (TENSYMP), 2022, pp. 1-6, doi: 10.1109/TENSYMP54529.2022.9864563.
- 24.R. Kumar, R. S. Tiwari and O. H. Gupta, "Transient Current Characteristics of VSC-HVDC System during Single and Double Pole Fault Conditions," 2022 IEEE Students Conference on Engineering and Systems (SCES), 2022, pp. 1-6, doi: 10.1109/SCES55490.2022.9887750.
- 25.G. Varanasi, S. Sarkar and A. Das, "Loss Minimization in Modular Multilevel Converter with Bypass Switch for HVDC Application," 2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT), 2022, pp. 1-6, doi: 10.1109/SeFeT55524.2022.9909476.
- 26.H. Fang, H. Xiang, S. Li, Y. Xin, J. Zhou and Y. Wang, "Dynamic Phasor Modeling of MMC-HVDC Systems," 2022 IEEE 5th International Conference on Information Systems and Computer Aided Education (ICISCAE), 2022, pp. 988-995, doi: 10.1109/ICISCAE55891.2022.9927689.
- 27.H. Fang, H. Xiang, H. Liu, Y. Xin, J. Zhou and Y. Wang, "Broadband stability analysis and control parameter optimization of VSC-HVDC," 2022 IEEE 5th International Conference on Information Systems and Computer Aided Education (ICISCAE), 2022, pp. 983-987, doi: 10.1109/ICISCAE55891.2022.9927632.

28.O. Bertozzi, H. R. Chamorro, O. Kotb, E. Prieto-Araujo and S. Ahmed, "Optimal Gain-scheduled POD for Power Systems with Hybrid HVDC Links," 2022 International Conference on Smart Energy Systems and Technologies (SEST), 2022, pp. 1-6, doi: 10.1109/SEST53650.2022.9898477.

- 29.Kuri, R. Zurowski, G. Mehlmann and M. Luther, "Converter Modelling Aspects at the Boundary between EMT and RMS Domain," 2022 International Conference on Smart Energy Systems and Technologies (SEST), 2022, pp. 1-6, doi: 10.1109/SEST53650.2022.9898501.
- 30.S. H. A. Niaki, Z. Chen, B. Bak-Jensen, K. Sharifabadi, Z. Liu and S. Hu, "DC Protection Design for VSC-HVDC Systems Based On Transient Stability Issue," 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), 2022, pp. 1-6, doi: 10.1109/ICECET55527.2022.9872770.
- 31.K. Al-Fouzan, O. AlNahabi, A. AlSunaya, A. Alkuhayli and M. Alharbi, "Modeling and Analysis of Multiterminal DC Grid for Renewable Energy

**Integration**," 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), 2022, pp. 1-6, doi: 10.1109/ICECET55527.2022.9872732.

- 32.S. H. Ashrafi Niaki, Z. Liu, Z. Chen, B. Bak-Jensen and S. Hu, "Protection System of Multi-Terminal MMC-based HVDC Grids: A Survey," 2022 International Conference on Power Energy Systems and Applications (ICoPESA), 2022, pp. 167-177, doi: 10.1109/ICoPESA54515.2022.9754409.
- 33.M. Richter, G. Mehlmann and M. Luther, "Impact of recovery and sympathetic inrush phenomena on VSC HVDC systems," 2022 57th International Universities Power Engineering Conference (UPEC), 2022, pp. 1-6, doi: 10.1109/UPEC55022.2022.9917995.
- 34.H. Yinghong, S. Peng, L. Zimeng and G. Qing, "Circulating Current Suppression for Modular Multilevel Converter Based on Predictive Control," 2022 4th International Conference on Power and Energy Technology (ICPET), 2022, pp. 1261-1266, doi:

10.1109/ICPET55165.2022.9918416.

- 35.W. Lin, Y. Lin and J. Xue, "A Novel Operation Boundary Searching Approach for MMC-HVDC System," 2022 4th International Conference on Power and Energy Technology (ICPET), 2022, pp. 381-386, doi: 10.1109/ICPET55165.2022.9918324.
- 36.-H. Zhang, S. -Y. He, Y. -Z. Xie, Y. Song, X. -J. Ni and P. Qiu, "A Pilot Test for Radiation Electric Field of ±200kV Hybrid DC Breaker in Short Circuit Fault," 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 2022, pp. 321-324, doi: 10.1109/APEMC53576.2022.9888406.

### Journals

#### **IEEE Access**

- 37.Jahn et al., "An Architecture for a Multi-Vendor VSC-HVDC Station With Partially Open Control and Protection," in IEEE Access, vol. 10, pp. 13555-13569, 2022, doi: 10.1109/ACCESS.2022.3146782.
- 38.G. F. Gontijo, M. K. Bakhshizadeh, Ł. H. Kocewiak and R. Teodorescu, "State Space Modeling of an Offshore Wind Power Plant With an MMC-HVDC Connection for an Eigenvalue-Based Stability Analysis," in IEEE Access, vol. 10, pp. 82844-82869, 2022, doi: 10.1109/ACCESS.2022.3196368.

#### **IEEE Systems Journal**

39.Y. Tao, B. Li, T. Liu, Q. Jiang and F. Blaabjerg, "Practical Fault Current Level Evaluation and Limiting Method of Bipolar HVdc Grid Based on Topology Optimization," in IEEE Systems Journal, vol. 16, no. 3, pp. 4466-4476, Sept. 2022, doi: 10.1109/JSYST.2021.3090452.

#### **IEEE Transactions on Power Delivery**

40.Nami, J. L. Rodriguez-Amenedo, S. Arnaltes, M. Á. Cardiel-Álvarez and R. A. Baraciarte, "Control of the Parallel Operation of DR-HVDC and VSC-HVDC for Offshore Wind Power Transmission," in IEEE Transactions on Power Delivery, vol. 37, no. 3, pp. 1682-1691, June 2022, doi: 10.1109/TPWRD.2021.3095529.

- 41.M. M. Belhaouane et al., "**Implementation and** Validation of a Model Predictive Controller on a Lab-Scale Three-Terminal MTDC Grid," in IEEE Transactions on Power Delivery, vol. 37, no. 3, pp. 2209-2219, June 2022, doi: 10.1109/TPWRD.2021.3107485.
- 42.D. G. Acero, M. Cheah-Mane, J. D. Páez, F. Morel, O. Gomis-Bellmunt and P. Dworakowski, "Dc-MMC for the Interconnection of HVDC Grids With Different Line Topologies," in IEEE Transactions on Power Delivery, vol. 37, no. 3, pp. 1692-1703, June 2022, doi: 10.1109/TPWRD.2021.3095966.
- 43.F. Errigo, F. Morel, C. Mathieu De Vienne, L. Chédot, A. Sari and P. Venet, "A Submodule With Integrated Supercapacitors for HVDC-MMC Providing Fast Frequency Response," in IEEE Transactions on Power Delivery, vol. 37, no. 3, pp. 1423-1432, June 2022, doi: 10.1109/TPWRD.2021.3086864.
- 44.M. Pourmirasghariyan, S. F. Zarei, M. Hamzeh and F. Blaabjerg, **"A Power Routing-Based Fault Detection Strategy for Multi-Terminal VSC-HVDC Grids**," in IEEE Transactions on Power Delivery, 2022, doi: 10.1109/TPWRD.2022.3194420.
- 45.J. Jia, X. Yan, B. Qin and B. Zhang, "Modeling and Analysis of the Torque-Frequency Dynamics for Multi-VSC Parallel System Based on the Equivalent Admittance," in IEEE Transactions on Power Delivery, vol. 37, no. 5, pp. 3597-3607, Oct. 2022, doi: 10.1109/TPWRD.2021.3131716.
- 46.S. Liu, B. Zhao, Y. Chen, G. Wang and X. Wang, "Optimal Arm Current Reallocation of Modular Multilevel Matrix Converter Dedicated for Power Grid Interconnection," in IEEE Transactions on Power Delivery, vol. 37, no. 5, pp. 3477-3490, Oct. 2022, doi: 10.1109/TPWRD.2021.3129539.
- 47.Z. Hassan, A. J. Watson, F. Tardelli and J. Clare, "A Switched Mid-Point Modular Multilevel Converter for HVDC Applications," in IEEE Transactions on Power Delivery, 2022, doi: 10.1109/TPWRD.2022.3217715.
- 48.H. Panahi, M. Sanaye-Pasand, S. H. A. Niaki and R. Zamani, "Fast Low Frequency Fault Location and Section Identification Scheme for VSC-Based Multi-Terminal HVDC Systems," in IEEE Transactions on Power Delivery, vol. 37, no. 3, pp. 2220-2229, June 2022, doi: 10.1109/TPWRD.2021.3107513.

#### **IEEE Transactions on Power Systems**

49.J. -S. Kim, J. -Y. Park, Y. -J. Kim and O. Gomis-Bellmunt, "Decentralized Robust Frequency Regulation of Multi-terminal HVDC-linked Grids," in IEEE Transactions on Power Systems, 2022, doi: 10.1109/TPWRS.2022.3201316.

#### **IEEE Transactions on Power Electronics**

50.J. Zhu et al., "Inertia Emulation and Fast Frequency-Droop Control Strategy of a Point-to-Point VSC-HVdc Transmission System for Asynchronous Grid Interconnection," in IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 6530-6543, June 2022, doi: 10.1109/TPEL.2021.3139960.

#### IEEE Transactions on Energy Conversion

- 51.C. Hirsching, M. Goertz, S. Wenig, A. Bisseling, M. Suriyah and T. Leibfried, "On Fault-Ride-Through Performance in MMC-HVDC Applications Controlled as a Virtual Synchronous Machine," in IEEE Transactions on Energy Conversion, 2022, doi: 10.1109/TEC.2022.3205055.
- 52.P. Wang, M. Kuschke and K. Strunz, "Analytical Modeling of Modular Multilevel Converter Under Pole-to-Pole DC Fault and Application to System Design and Protection," in IEEE Transactions on Energy Conversion, 2022, doi: 10.1109/TEC.2022.3209553.

## IEEE Transactions on Industry Applications

53.R. Yang, G. Shi, C. Zhang, G. Li and X. Cai, "Internal Energy Based Grid-Forming Control for MMC-HVDC Systems with Wind Farm Integration," in IEEE Transactions on Industry Applications, 2022, doi: 10.1109/TIA.2022.3205569.

#### IEEE Transactions on Industrial Electronics

- 54.C. Zhan, L. Zhu, W. Wang, Y. Zhang, S. Ji and F. Iannuzzo, "Multi-dimensional Mission-Profile-Based Lifetime Estimation Approach for IGBT Modules in MMC-HVdc Application Considering Bidirectional Power Transfer," in IEEE Transactions on Industrial Electronics, 2022, doi: 10.1109/TIE.2022.3203768.
- 55.M. A. Rahman, M. R. Islam, K. M. Muttaqi and D. Sutanto, "A Modular Magnetic Linked Converter Station for Offshore Power Transfer through HVDC Link," in IEEE Transactions on Industrial Electronics, 2022, doi: 10.1109/TIE.2022.3206691.

#### **IEEE Transactions on Sustainable** Energy

- 56.J. Li et al., "Coordinated Planning of HVDCs and Power-to-Hydrogen Supply Chains for Interregional Renewable Energy Utilization," in IEEE Transactions on Sustainable Energy, vol. 13, no. 4, pp. 1913-1929, Oct. 2022, doi: 10.1109/TSTE.2022.3175855.
- 57.Q. Li and N. Zhao, "General Power Flow Calculation for Multi-Terminal HVDC System Based on Sensitivity Analysis and Extended AC Grid," in IEEE Transactions on Sustainable Energy, vol. 13, no. 4, pp. 1886-1899, Oct. 2022, doi: 10.1109/TSTE.2022.3175154.

#### **IEEE Journal of Emerging and Selected Topics in Power Electronics**

58.E. B. Avdiaj, S. D'Arco, L. Piegari and J. A. Suul, "Negative Sequence Control for Virtual Synchronous Machines Under Unbalanced Conditions," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5670-5685, Oct. 2022, doi: 10.1109/JESTPE.2022.3175169.

- 59.B. Shao, S. Zhao, Y. Yang, B. Gao, L. Wang and F. Blaabjerg, "Nonlinear Subsynchronous Oscillation Damping Controller for Direct-Drive Wind Farms With VSC-HVDC Systems," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 3, pp. 2842-2858, June 2022, doi: 10.1109/JESTPE.2020.3025081.
- 60.S. Song, J. Liu and X. Chen, "An MMC DC-Link Voltage Control Method Without Actual Voltage Measurement," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5698-5708, Oct. 2022, doi: 10.1109/JESTPE.2022.3172106.
- 61.Y. Liu, Z. Duan, Q. Chen, M. Ban and Z. Li, "Research on MMC Improved Sub-module Topology with DC Fault Ride-through and Negative Level Output Capability," in IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, doi: 10.1109/JESTPE.2022.3210764.

#### **IEEE Open Journal of Power Electronics**

62.Jahn, G. Chaffey, E. Prieto-Araujo, M. Hoffmann, R. Alvarez and A. Monti, "**On the Partitioning of MMC Control Systems Using Graph Theory**," in IEEE Open Journal of Power Electronics, vol. 3, pp. 611-620, 2022, doi: 10.1109/OJPEL.2022.3204558.

#### **IET Renewable Power Generation**

63.Wang, P., Kuschke, M., & Strunz, K., "Equal-area criterion and analytical model for transient stability assessment of hybrid AC-DC transmission system using voltage sourced converter". IET Renewable Power Generation, 2022, https://doi.org/10.1049/rpg2.12574

#### **CSEE Journal of Power and Energy** Systems

- 64.C. Peng, R. Li and X. Cai, "**Thyristor-inserted MMC sub-module topology with DC fault blocking capability**," in CSEE Journal of Power and Energy Systems, doi: 10.17775/CSEEJPES.2021.03350.
- 65.M. Z. Yousaf, H. Liu, A. Raza and A. Mustafa, "Deep learning-based robust dc fault protection scheme for meshed HVdc grids," in CSEE Journal of Power and Energy Systems, doi: 10.17775/CSEEJPES.2021.03550.

#### Elsevier International Journal of Electrical Power & Energy Systems

- 66.Xianqiang Shi, Renxin Yang, Xu Cai, Zixi Fang, Peng Dong, Fangquan Rao, "Improved comprehensive energy-based control for MMC-HVDC system", International Journal of Electrical Power & Energy Systems, Volume 145, 2023, 108593, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2022.108593.
- 67.Guo, H., Guo, Q., Guo, T., Huang, L., Deng, L., Lu, Y., & Zhuo, F., "**Mechanism analysis and suppression method of high frequency harmonic resonance in VSC-HVDC**." International Journal of Electrical Power & Energy Systems, Volume 143, 2022, 108468, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2022.108468.
- 68.V. Psaras, D. Tzelepis, G. Burt, "HVDC grid fault location method using genetic algorithm on reconstructed frequency-domain voltage

**profiles**", International Journal of Electrical Power & Energy Systems, Volume 144, 2023, 108429, ISSN 0142-0615,

https://doi.org/10.1016/j.ijepes.2022.108429.

69.Bingbing Shao, Qi Xiao, Lingfei Xiong, Liyuan Wang, Yongheng Yang, Zhe Chen, Frede Blaabjerg, Josep M. Guerrero, "Power coupling analysis and improved decoupling control for the VSC connected to a weak AC grid", International Journal of Electrical Power & Energy Systems, Volume 145, 2023, 108645, ISSN 0142-0615,

https://doi.org/10.1016/j.ijepes.2022.108645.

70.Yanxun Guo, Zhuang Xu, Yaoqiang Wang, Xiaomei Yao, Jun Liang, "**A nonunit two-stage protection** scheme for DC transmission lines in highvoltage DC grids", International Journal of Electrical Power & Energy Systems, Volume 146, 2023, 108742, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2022.108742.

#### **Other journals**

- 71.Abdurrahim Erat, Ahmet Mete Vural, "DC/DC Modular Multilevel Converters for HVDC Interconnection: A Comprehensive Review", International Transactions on Electrical Energy Systems, vol. 2022, Article ID 2687243, 49 pages, 2022. https://doi.org/10.1155/2022/2687243
- 72.Lei Chen, Zekai Zhao, Xuefeng Qiao, Guocheng Li, Hongkun Chen, "A novel current-limiting method for MMC-HVDC by coordinating virtual impedance control and fault current limiter", Energy Reports, Volume 8, Supplement 15, 2022, Pages 385-398, ISSN 2352-4847, https://doi.org/10.1016/j.egyr.2022.10.148.
- 73.Srinu, M., & Pasha, S. A. "Wind Power Integrated Dual-Mode Controlled AC/VSC-HVDC Hybrid Transmission System" International Journal of Research Publication and Reviews (IJRPR)
- 74.Yifu Li, Shiyuan Wang, Amir H. Etemadi, Payman Dehghanian, **"Adaptive Harmonic Power Flow** Algorithm for Hybrid AC/DC Transmission Systems.", 2022-IASAM-0207

### **Overview of HVDC-VSC Systems**

## **Operational systems**

Reference: VSC-HVDC Newsletter 06-2022, Prof. Mike Barnes. Supplemented and continuously updated by RTE international. New updates for this month are highlighted in blue.

|    | Name                                  | Year<br>Commissi-<br>oned | Power<br>(MW)   | Voltage<br>DC (kV) |         | Transmission<br>Length (km)   | Converter<br>Manufacturer     | Reference                                                                                                                                          |
|----|---------------------------------------|---------------------------|-----------------|--------------------|---------|-------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Hällsjön,<br>Sweden                   | 1997                      | 3               | ±10                | 10      | 10 OHL                        | ABB                           | https://www.hitachienergy.com/about-us/case-studies/hallsjon-<br>the-first-hvdc-light-transmission                                                 |
| 2  | Gotland,<br>Sweden                    | 1999                      | 50              | ±80                | 77      | 70 underground                | ABB                           | https://www.hitachienergy.com/about-us/case-studies/the-<br>gotland-hvdc-link                                                                      |
| 3  | Eagle Pass,<br>USA                    | 2000                      | 36              | ±15.9              | 138     | Back-to-Back                  | ABB                           | https://www.hitachienergy.com/about-us/case-studies/eagle-<br>pass                                                                                 |
| 4  | Direct Link /<br>TerraNora, Australia | 2000                      | 3x60            | ±80                | 132/110 | 65 underground                | ABB                           | https://www.hitachienergy.com/africa/en/about-us/case-<br>studies/terranora-interconnector                                                         |
| 5  | Tjaereborg,<br>Denmark                | 2000                      | 7,2             | ±9                 | 10,5    | 4,3 underground               | ABB                           | https://www.hitachienergy.com/africa/en/about-us/case-<br>studies/tjaereborg                                                                       |
| 6  | Murraylink,<br>Australia              | 2002                      | 220             | ±150               | 132/220 | 180 underground               | ABB                           | https://www.hitachienergy.com/about-us/case-<br>studies/murraylink                                                                                 |
| 7  | Cross Sound,<br>USA                   | 2002                      | 330             | ±150               | 345/138 | 40 subsea                     | ABB                           | https://www.hitachienergy.com/africa/en/about-us/case-<br>studies/cross-sound-cable                                                                |
| 8  | Troll A 1&2,<br>Norway                | 2005                      | 2x44            | ±60                | 56/132  | 70 subsea                     | ABB                           | https://www.hitachienergy.com/about-us/case-studies/troll-a                                                                                        |
| 9  | Estlink,<br>Finland                   | 2006                      | 350             | ±150               | 400/330 | 74 subsea 31<br>underground   | ABB                           | https://www.hitachienergy.com/africa/en/about-us/case-<br>studies/estlink                                                                          |
| 10 | Caprivi Link,<br>Namibia              | 2010                      | 300             | ±350               | 330/400 | 950 underground               | ABB                           | https://www.hitachienergy.com/uk-ie/en/about-us/case-<br>studies/caprivi-link                                                                      |
| 11 | Trans Bay Cable,<br>USA               | 2010                      | 400             | ±200               | 230/138 | 85 subsea                     | Siemens                       | http://www.transbaycable.com/                                                                                                                      |
| 12 | Valhall,<br>Norway                    | 2011                      | 78              | ±150               | 11/300  | 292 subsea                    | ABB                           | https://www.hitachienergy.com/about-us/case-studies/valhall                                                                                        |
| 13 | Nanhui,<br>China                      | 2011                      | 18              | ±30                | 35/35   | 8,4 underground               | C-EPRI                        | https://pdfs.semanticscholar.org/863e/f05fbffeb04965c8c4b77e2<br>ed27f949fea30.pdf? ga=2.167546302.1042474684.1664438832<br>-2020044022.1663227250 |
| 14 | BorWin1,<br>Germany                   | 2012                      | 400             | ±150               | 170/380 | 125 subsea 75<br>underground  | ABB                           | https://www.hitachienergy.com/about-us/case-studies/borwin1                                                                                        |
| 15 | Nan'ao Island,<br>China               | 2013                      | 200,<br>150, 50 | ±160               | 110     | Multi-terminal<br>underground | RXHK, XiDian, NR-<br>Electric | https://www.rxhk.co.uk/solutions/smart-vsc-hvdc-<br>transmission/smart-vsc-hvdc-transmission/nanao-multi-terminal-<br>vsc-hvdc/                    |

|    | Name                                       | Year<br>Commissi-<br>oned | Power<br>(MW)       | Voltage<br>DC (kV) | Voltage<br>AC (kV) | Transmission<br>Length (km)     | Converter<br>Manufacturer                                                | Reference                                                                                                                                                                                              |
|----|--------------------------------------------|---------------------------|---------------------|--------------------|--------------------|---------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 | East West<br>Interconnector,<br>Ireland-UK | 2013                      | 500                 | ±200               | 400/400            | 186 subsea 75<br>underground    | ABB                                                                      | https://www.hitachienergy.com/about-us/case-studies/east-<br>west-interconnector                                                                                                                       |
| 17 | Zhoushan,<br>China                         | 2014                      | 400<br>300<br>3x100 | ±200               | 110/220            | 129 subsea                      | XuJi Electric/NR<br>Electric                                             | <u>https://www.tdworld.com/digital-</u><br>innovations/article/20969421/china-upgrades-capacity-to-the-<br>zhoushan-islands                                                                            |
| 18 | Mackinac,<br>USA                           | 2014                      | 200                 | ±71                | 138/138            | Back-to-Back                    | ABB                                                                      | https://www.hitachienergy.com/about-us/case-studies/mackinac                                                                                                                                           |
| 19 | Skagerrak 4,<br>Norway-Denmark             | 2014                      | 700                 | ±500               | 400/400            | 140 subsea 104<br>underground   | ABB                                                                      | https://www.hitachienergy.com/about-us/case-studies/skagerrak                                                                                                                                          |
| 20 | INELFE,<br>France-Spain                    | 2015                      | 2x1000              | ±320               | 400/400            | 65 underground                  | Siemens                                                                  | https://www.inelfe.eu/en/projects/baixas-santa-llogaia                                                                                                                                                 |
| 21 | Åland,<br>Finland                          | 2015                      | 100                 | ±80                | 110/100            | 158 subsea                      | ABB                                                                      | https://www.hitachienergy.com/about-us/case-studies/aland                                                                                                                                              |
| 22 | HelWin1,<br>Germany                        | 2015                      | 576                 | ±250               | 155/400            | 85 subsea 45<br>underground     | Siemens                                                                  | https://www.tennet.eu/projects/helwin1<br>https://www.realwire.com/releases/Successful-Commissioning-<br>Of-BorWin2-And-HelWin1-HVDC-Grid-Connections                                                  |
| 23 | HelWin2,<br>Germany                        | 2015                      | 690                 | ±320               | 155/400            | 85 subsea 45<br>underground     | Siemens                                                                  | https://www.tennet.eu/projects/helwin2                                                                                                                                                                 |
| 24 | Troll A 3&4,<br>Norway                     | 2015                      | 2x50                | ±60                | 66/132             | 70 subsea                       | ABB                                                                      | https://www.hitachienergy.com/about-us/case-studies/troll-a                                                                                                                                            |
| 25 | SylWin1,<br>Germany                        | 2015                      | 864                 | ±320               | 155/400            | 160 subsea 45<br>underground    | Siemens                                                                  | https://www.tennet.eu/projects/sylwin1                                                                                                                                                                 |
| 26 | BorWin2,<br>Germany                        | 2015                      | 800                 | ±300               | 155/400            | 125 subsea 75<br>underground    | Siemens                                                                  | https://www.tennet.eu/projects/borwin2                                                                                                                                                                 |
| 27 | Dolwin1,<br>Germany                        | 2015                      | 800                 | ±320               | 155/380            | 75 subsea 90<br>underground     | ABB                                                                      | https://www.hitachienergy.com/about-us/case-studies/dolwin1                                                                                                                                            |
| 28 | Xiamen,<br>China                           | 2015                      | 1000                | ±320               | 220                | 6 subsea 5<br>underground       | C-EPRI                                                                   | https://ieeexplore.ieee.org/document/7800677<br>https://www.power-technology.com/marketdata/xiamen-<br>mainland-xiamen-island-hvdc-line-china/                                                         |
| 29 | Luxi,<br>China                             | 2016                      | 1000                | ±350               | 500                | Back-to-Back                    | China Southern<br>Grid, RXHK<br>(Yunnan) XD<br>Group/IEECAS<br>(Guangxi) | https://hvdcnewschina.blogspot.com/2017/09/luxi-hybrid-btb-<br>converter-station.html<br>https://www.rxhk.co.uk/solutions/smart-vsc-hvdc-<br>transmission/smart-vsc-hvdc-transmission/yunnan-luxi-b2b/ |
| 30 | NordBalt,<br>Sweden                        | 2017                      | 700                 | ±300               | 400/330            | 400 subsea 40+10<br>underground | ABB                                                                      | https://www.hitachienergy.com/africa/en/about-us/case-<br>studies/nordbalt                                                                                                                             |
| 31 | DolWin2,<br>Germany                        | 2017                      | 916                 | ±320               | 155/380            | 90 subsea 45<br>underground     | ABB                                                                      | https://www.hitachienergy.com/about-us/case-studies/dolwin2                                                                                                                                            |
| 32 | Johan Sverdrup<br>Phase 1, Norway          | 2018                      | 100                 | ±80                | 33/300             | 200 subsea                      | ABB                                                                      | https://www.hitachienergy.com/about-us/case-studies/johan-<br>sverdrup                                                                                                                                 |

|    | Name                                                   | Year<br>Commissi-<br>oned | Power<br>(MW) | Voltage<br>DC (kV) |               | Transmission<br>Length (km)  | Converter<br>Manufacturer                                           | Reference                                                                                                                                                                                                                                                                            |
|----|--------------------------------------------------------|---------------------------|---------------|--------------------|---------------|------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33 | Caithness Moray,<br>UK                                 | 2018                      | 800 +<br>1200 | ±320               | 230/400       | 113 subsea 37 OHL            | ABB                                                                 | https://www.hitachienergy.com/about-us/case-studies/caithness-<br>moray-hvdc-link                                                                                                                                                                                                    |
| 34 | Maritime Link,<br>Canada                               | 2018                      | 500           | ±200               | 230/345       | 180 subsea 187<br>OHL        | ABB                                                                 | https://www.hitachienergy.com/about-us/case-studies/maritime-<br>link                                                                                                                                                                                                                |
| 35 | DolWin3,<br>Germany                                    | 2018                      | 900           | ±320               | 155/400       | 83 subsea 78<br>underground  | GE                                                                  | https://www.tennet.eu/projects/dolwin3                                                                                                                                                                                                                                               |
| 36 | Hokkaido-Honshu,<br>Japan                              | 2019                      | 300           | ±250               | 275           | 24 underground 98<br>OHL     | Toshiba                                                             | https://www.global.toshiba/ww/news/energy/2019/03/news-<br>20190328-02.html                                                                                                                                                                                                          |
| 37 | Yu'E,<br>China                                         | 2019                      | 4x1250        | ±420               | /             | Back-to-Back                 | RXHK, XuJi Electric<br>and C-EPRI                                   | <pre>https://www.rxhk.co.uk/corporate/news/yue-hvdc-<br/>commissioning-complete/<br/>https://www.rxhk.co.uk/solutions/smart-vsc-hvdc-<br/>transmission/smart-vsc-hvdc-transmission/yue-b2b-hvdc/<br/>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amp;arnumber=87<br/>79807</pre> |
| 38 | COBRAcable,<br>Denmark-<br>Netherland                  | 2019                      | 700           | ±320               | 400/400       | 307 subsea 22<br>underground | Siemens                                                             | https://en.energinet.dk/Infrastructure-<br>Projects/Projektliste/COBRAcable                                                                                                                                                                                                          |
| 39 | BorWin3,<br>Gemany                                     | 2019                      | 900           | ±320               | 155/400       | 130 subsea 30<br>underground | Siemens                                                             | https://www.tennet.eu/projects/borwin3                                                                                                                                                                                                                                               |
| 40 | NEMO,<br>UK-Belgium                                    | 2019                      | 1000          | ±400               | 400/380       | 130 subsea 10<br>underground | Siemens                                                             | https://www.nemolink.co.uk/                                                                                                                                                                                                                                                          |
| 41 | ALEGrO,<br>Germany-Belgium                             | 2020                      | 1000          | ±320               | 380/380       | 90 underground               | Siemens Energy                                                      | https://www.amprion.net/Grid-expansion/Our-Projects/ALEGrO/                                                                                                                                                                                                                          |
|    | Zhangbei Phase 1,<br>China                             | 2020                      | 2x3000        | ±535               | 500/500       | Multi-terminal<br>666 OHL    | NR Electric, XuJi<br>Electric, C-EPRI,<br>SiFang and Hitachi<br>ABB |                                                                                                                                                                                                                                                                                      |
| 43 | Kriegers-Flak<br>Combined Solution,<br>Germany-Denmark |                           | 410           | ±140               | 150/400       | Back-to-Back                 | Hitachi ABB                                                         | <u>https://en.energinet.dk/Infrastructure-</u><br><u>Projects/Projektliste/KriegersFlakCGS</u><br><u>https://www.hitachienergy.com/africa/en/about-us/case-</u><br><u>studies/kriegers-flak-combined-grid-solutionskf-cgshvdc</u>                                                    |
| 44 | NordLink,<br>Norway-Germany                            | 2020                      | 1400          |                    | 0/400/38<br>0 | underground 53<br>OHL        | Hitachi ABB                                                         | https://www.hitachienergy.com/about-us/case-studies/nordlink                                                                                                                                                                                                                         |
| 45 | KunLiuLong /<br>Wudongde CSG,<br>China                 | 2020                      | 5000<br>3000  | ±800               | 525           | 1452 for three terminals OHL | RXHK, Xuji, TBEA,<br>NARI, Xidian                                   | scheme- commercial-operation/                                                                                                                                                                                                                                                        |
| 46 | IFA2,<br>UK-France                                     | 2021                      | 1000          | ±320               | 400/400       | 240 subsea                   | Hitachi ABB                                                         | https://www.hitachienergy.com/about-us/case-studies/ifa2<br>http://www.ifa2interconnector.com/<br>https://www.hitachiabb-powergrids.com/references/hvdc/ifa2                                                                                                                         |

|    | Name                                   | Year<br>Commissi-<br>oned | Power<br>(MW) |      | Voltage<br>AC (kV) | Transmission<br>Length (km) | Converter<br>Manufacturer | Reference                                                                                                                                                                                                                                                                                                                  |
|----|----------------------------------------|---------------------------|---------------|------|--------------------|-----------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 | SW Link,<br>Sweden                     | 2021                      | 2x720         | ±300 | 400                | 190 underground<br>60 OHL   | GE                        | https://www.gegridsolutions.com/products/applications/HVDC/So<br>uth-West-Link-HVDC-case-study-EN-2015-10-Grid-PEA-0574.pdf<br>https://www.svk.se/sydvastlanken                                                                                                                                                            |
| 48 | Rudong offshore<br>wind farm,<br>China | 2021                      | 1100          | ±400 | 220/500            | 100 subsea                  | RXHK,<br>XJ Group         | https://www.rxhk.co.uk/corporate/news/rudong-owf-hvdc-link-<br>goes-live/<br>https://www.nrec.com/en/index.php/about/newsInfo/107.html                                                                                                                                                                                     |
| 49 | North Sea Link,<br>Norway-UK           | 2021                      | 1400          | ±515 | 420/400            | 720 subsea                  | Hitachi ABB               | https://www.hitachienergy.com/about-us/case-studies/nsl-link<br>http://www.northsealink.com/                                                                                                                                                                                                                               |
| 50 | Pugalur - Thrissur,<br>India           | 2021                      | 2x1000        | ±320 | /                  | 32 underground<br>170 OHL   | Siemens Energy            | https://assets.siemens-<br>energy.com/siemens/assets/api/uuid:a6cb3b5d-ac70-41e9-8b9a-<br>21e0968937b8/2021-11-24-hvdc-<br>referenceflyer.pdf?ste_sid=65764bb21229d02112c445e071d12c<br>5e<br>https://www.nsenergybusiness.com/projects/raigarh-pugalur-<br>trichur-high-voltage-direct-current-hvdc-transmission-project/ |
| 51 | ElecLink,<br>UK-France                 | 2022                      | 1000          | ±320 | 400/400            | 51 subsea                   | Siemens Energy            | http://www.eleclink.co.uk/                                                                                                                                                                                                                                                                                                 |
| 52 | Guangdong<br>(partial),<br>China       | 2022                      | 2x1500        | ±300 | /                  | Back-to-back                | RXHK and partners         | https://www.rxhk.co.uk/corporate/news/guangdong-b2b-<br>contract-award/<br>http://global.chinadaily.com.cn/a/202206/14/WS62a7f8a3a310fd<br>2b29e629e8.html                                                                                                                                                                 |

## Future projects (details subject to change)

Reference: VSC-HVDC Newsletter 06-2022, Prof. Mike Barnes. Supplemented and continuously updated by RTE international. New updates for this month are highlighted in blue.

|    | Name                                    | Year<br>commissi-<br>onned | Power<br>(MW) | Voltage<br>DC (kV) | Voltage<br>AC (kV) | Transmission<br>Length (km)   | Converter<br>Manufacturer    | Reference                                                                                                                                                                                                                                                                                         |
|----|-----------------------------------------|----------------------------|---------------|--------------------|--------------------|-------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Johan Sverdrup<br>Phase 2, Norway       | 2022                       | 200           | ±80                | 110/300            | 200 subsea                    | Siemens Energy               | https://ec.europa.eu/energy/sites/ener/files/documents/10. shar<br>ifabadi kamran -<br>multivendor hvdc links supplying oil and gas installations.pdf                                                                                                                                             |
| 2  | Baihetan-Jiangsu<br>UHVDC,<br>China     | 2022                       | 1000          | ±400               | 800                | 2080 OHL                      | RXHK, NR-Electric,<br>C-EPRI | https://www.rxhk.co.uk/corporate/news/baihetan-jiangsu-uhvdc-<br>transmission-project-contract-award/                                                                                                                                                                                             |
| 3  | Savoie-Piedmont,<br>Italy-France        | 2022                       | 2x600         | ±320               | /                  | 190 underground               | GE                           | https://www.gegridsolutions.com/products/applications/hvdc/fran<br>c e-italy-hvdc-link-casestudy-en-2018-02-grid-pea-1641.pdf                                                                                                                                                                     |
| 4  | Zhangbei Phase 2,<br>China              | 2022                       | 2x1500        |                    | 500/500            | Multi-terminal<br>666 OHL     | /                            | https://www.hitachienergy.com/about-us/case-studies/zhangbei                                                                                                                                                                                                                                      |
| 5  | Guangdong<br>(remaining),<br>China      | 2023                       | 2x1500        | ±300               | /                  | Back-to-back                  | RXHK and partners            | https://www.rxhk.co.uk/corporate/news/guangdong-b2b-<br>contract-award/<br>http://global.chinadaily.com.cn/a/202206/14/WS62a7f8a3a310fd<br>2b29e629e8.html                                                                                                                                        |
| 6  | Attica-Crete,<br>Greece                 | 2023                       | 2x500         | ±500               | 150                | 335 subsea                    | Siemens Energy               | https://www.admie.gr/en/erga/erga-diasyndeseis/diasyndesi-tis-<br>kritis-me-tin-attiki<br>https://www.nsenergybusiness.com/projects/attica-crete-hvdc-<br>interconnector/<br>https://press.siemens-energy.com/eu/en/pressrelease/siemens-<br>hvdc-power-bridge-will-connect-crete-mainland-greece |
| 7  | DolWin6,<br>Germany                     | 2023                       | 900           | ±320               | /                  | 45 subsea 45<br>underground   | Siemens Energy               | https://www.tennet.eu/projects/dolwin6                                                                                                                                                                                                                                                            |
| 8  | Wando DongJeju<br>Jeju Island,<br>Korea | 2023                       | 200           | ±150               | 154                | 100 subsea                    | Hitachi Energy               | https://www.hitachienergy.com/about-us/case-studies/wando-<br>dongjeju-3-hvdc-converter-station-project                                                                                                                                                                                           |
| 9  | Viking Link,<br>UK-Denmark              | 2023                       | 1400          | ±525               | 400/400            | 630 subsea 135<br>underground | Siemens Energy               | http://viking-link.com/                                                                                                                                                                                                                                                                           |
| 10 | Creyke Beck A,<br>UK                    | 2023                       | 1200          | ±320               | 66/420             | 130 to 190 subsea             | Hitachi Energy               | https://www.hitachienergy.com/about-us/case-studies/dogger-<br>bank                                                                                                                                                                                                                               |
| 11 | Northconnect,<br>UK-Norway              | 2024                       | 1400          | ±500               | 400                | 655 subsea                    | /                            | http://www.northconnect.no/                                                                                                                                                                                                                                                                       |
| 12 | Shetland,<br>UK                         | 2024                       | 600           | ±320               | 132                | 267 subsea                    | Hitachi Energy               | <u>https://www.hitachiabb-</u><br>powergrids.com/references/hvdc/shetland<br>https://www.ssen-transmission.co.uk/projects/shetland/                                                                                                                                                               |
| 13 | SOO Green Rail,<br>USA                  | 2024                       | 2100          | ±525               | 345/345            | 560 underground               | Siemens Energy               | https://soogreenhvdclink-os.com/about/                                                                                                                                                                                                                                                            |
| 14 | Project Lightning<br>Das Island,        | 2024                       | 2x1000        | ±400               | 132/400            | 150 subsea                    | Hitachi Energy               | https://www.hitachienergy.com/about-us/case-studies/project-<br>lightning                                                                                                                                                                                                                         |

|    | Name                                                        | Year<br>commissi-<br>onned |        | Voltage<br>DC (kV) |         | Transmission<br>Length (km)   | Converter<br>Manufacturer | Reference                                                                                                                                                                                                                          |
|----|-------------------------------------------------------------|----------------------------|--------|--------------------|---------|-------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | United Arab<br>Emirates                                     |                            |        |                    |         |                               |                           |                                                                                                                                                                                                                                    |
| 15 | Ultranet,<br>Germany                                        | 2024                       | 2000   | ±380               | 400     | 340 OHL                       | Siemens Energy            | https://www.amprion.net/Grid-expansion/Our-Projects/Ultranet/                                                                                                                                                                      |
| 16 | Greenlink,<br>UK-Ireland                                    | 2024                       | 500    | ±320               | /       | 190 subsea                    | Siemens Energy            | https://www.greenlink.ie/<br>https://press.siemens-<br>energy.com/global/en/pressrelease/siemens-energy-and-<br>sumitomo-electric-supply-hvdc-technology-power-link-between-<br>ireland                                            |
| 17 | Creyke Beck B,<br>UK                                        | 2024                       | 1200   | ±320               | 66/420  | 130 to 190 subsea             | Hitachi Energy            | https://www.hitachienergy.com/about-us/case-studies/dogger-<br>bank                                                                                                                                                                |
| 18 | Norfolk Boreas,<br>UK                                       | 2025                       | 1800   | /                  | 66/400  | ~50 subsea ~60<br>underground | Siemens Energy            | https://group.vattenfall.com/uk/newsroom/news-press-<br>releases/pressreleases/stories/hvdc-for-norfolk-offshore-wind-<br>farms<br>https://www.nsenergybusiness.com/projects/norfolk-vanguard-<br>offshore-wind-farm/              |
| 19 | Sofia,<br>UK                                                | 2025                       | 1320   | ±320               | 400     | 220 subsea 7<br>underground   | GE                        | https://www.ge.com/news/press-releases/ge-consortium-<br>awarded-contract-to-build-state-of-the-art-hvdc-system-for-rwe-<br>sofia-offshore-wind-farm                                                                               |
| 20 | Norfolk Vanguard,<br>UK                                     | 2025                       | 1800   | /                  | 66/400  | ~50 subsea ~60<br>underground | Siemens Energy            | https://www.nsenergybusiness.com/projects/norfolk-vanguard-<br>offshore-wind-farm/                                                                                                                                                 |
| 21 | Champlain Hudson<br>Power Express,<br>USA                   | 2025                       | 1250   | ±400               | /       | 330 subsea 220<br>underground | Hitachi Energy            | <u>https://chpexpress.com/</u><br><u>https://www.hitachienergy.com/ch/de/news/press-</u><br><u>releases/2022/09/hitachi-energy-to-support-major-renewable-</u><br><u>electricity-transmission-between-canada-and-new-york-city</u> |
| 22 | Egypt-Saudi Arabia,<br>Egypt-Saudi Arabia                   | 2025                       | 2x1500 | ±500               | 0//     | 22 subsea 1350<br>OHL         | Hitachi Energy            | https://www.hitachienergy.com/news/press-<br>releases/2021/10/hitachi-abb-power-grids-consortium-awarded-<br>major-contract-for-the-first-ever-large-scale-hvdc-<br>interconnection-in-the-middle-east-and-north-africa            |
| 23 | Project Lightning Al<br>Ghallan,<br>United Arab<br>Emirates | 2025                       | 2x600  | ±320               | /       | 140 subsea                    | Hitachi Energy            | https://www.hitachienergy.com/about-us/case-studies/project-<br>lightning                                                                                                                                                          |
| 24 | Mumbai,<br>India                                            | 2025                       | 1000   | ±320               | 200/400 | 50 underground 20-<br>30 OHL  | Hitachi Energy            | https://www.hitachienergy.com/about-us/case-studies/mumbai                                                                                                                                                                         |
| 25 | Sunrise wind,<br>USA                                        | 2025                       | 924    | ±320               | /       | 160 subsea                    | Siemens Energy            | https://www.4coffshore.com/news/newsItem.aspx?nid=24409                                                                                                                                                                            |
| 26 | BorWin 5,<br>Germany                                        | 2025                       | 900    | ±320               | /       | 120 subsea 110<br>underground | Siemens Energy            | https://www.tennet.eu/our-grid/offshore-projects-<br>germany/borwin5/                                                                                                                                                              |
| 27 | DolWin5,<br>Germany                                         | 2025                       | 900    | ±320               | 66/380  | 100 subsea 30<br>underground  | Hitachi Energy            | https://www.tennet.eu/projects/dolwin5<br>https://www.hitachienergy.com/about-us/case-studies/dolwin-5                                                                                                                             |

|    | Name                                                    | Year<br>commissi-<br>onned |        | Voltage<br>DC (kV) |                              | Transmission<br>Length (km)                           | Converter<br>Manufacturer | Reference                                                                                                                                                                           |
|----|---------------------------------------------------------|----------------------------|--------|--------------------|------------------------------|-------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28 | EuroAsia<br>Interconnector,<br>Israel-Cyprus-<br>Greece | 2026                       | 2000   | /                  | /                            | Multi-terminal<br>310+898 subsea<br>13+10 underground | Siemens Energy            | http://www.euroasia-interconnector.com/                                                                                                                                             |
| 29 | Creyke Beck C,<br>UK                                    | 2026                       | 1200   | ±320               | 66/420                       | 196 subsea 7<br>underground                           | Hitachi Energy            | https://www.hitachienergy.com/about-us/case-studies/dogger-<br>bank                                                                                                                 |
| 30 | SuedOstLink,<br>Germany                                 | 2026                       | 2000   | ±525               | /                            | 580 underground                                       | Siemens Energy            | https://www.50hertz.com/en/Grid/Griddevelopement/Onshorepro<br>jects/SuedOstLink<br>https://www.tennet.eu/de/projekte/suedostlink                                                   |
| 31 | Celtic Interconnector<br>,<br>France-Ireland            | 2026                       | 700    | ±320 to<br>±500    | 220/400                      | 500 subsea 75<br>underground                          | /                         | http://www.eirgridgroup.com/the-grid/projects/celtic-<br>interconnector/the-project/                                                                                                |
| 32 | A-Nord Germany,<br>Germany                              | 2027                       | 2000   | ±525               | 380                          | 300 OHL                                               | /                         | https://a-nord.amprion.net/Projekt/                                                                                                                                                 |
| 33 | PGCIL Pang -<br>Kaithal,<br>India                       | 2027                       | 2x2500 | /                  | /                            | /                                                     | /                         | https://www.thehindubusinessline.com/news/power-ministry-<br>clears-leh-kaithal-green-energy-transmission-<br>corridor/article64906313.ece                                          |
| 34 | Xlinks1,<br>Moroco-UK                                   | 2027                       | 2x1800 | /                  | /                            | 3800 subsea                                           | /                         | <u>https://xlinks.co/</u>                                                                                                                                                           |
| 35 | Altantic Shore 2<br>(Monmouth ECC),<br>USA              | 2027                       | 1510   |                    | 66 to 150<br>/ 230 to<br>275 | 138 subsea 19<br>underground                          | /                         | https://www.boem.gov/sites/default/files/documents/renewable-<br>energy/state-activities/Atlantic-Shores-COP-Volume-1-Project-<br>Description.PDF                                   |
| 36 | Suedlink – DC3,<br>Germany                              | 2027                       | 2000   | ±525               | 400/400                      | 700 underground                                       | Siemens Energy            | https://www.transnetbw.de/de/suedlink<br>https://www.tennet.eu/de/projekte/suedlink                                                                                                 |
| 37 | Marex,<br>UK-Ireland                                    | 2027                       | 750    | ±400               | /                            | 245 underground                                       | /                         | https://tyndp.entsoe.eu/tyndp2018/projects/projects/349                                                                                                                             |
| 38 | Suedlink – DC4,<br>Germany                              | 2027                       | 2000   | ±525               | 400/400                      | 550 underground                                       | Hitachi Energy            | https://www.transnetbw.de/de/suedlink<br>https://www.tennet.eu/de/projekte/suedlink<br>https://www.hitachienergy.com/about-us/case-studies/suedlink-<br><u>dc4</u>                  |
| 39 | AAPowerLink,<br>Australia-Singapore                     | 2027                       | 3000   | /                  | /                            | 4200 subsea 800<br>OHL                                | /                         | https://aapowerlink.sg/                                                                                                                                                             |
| 40 | Gridlink,<br>UK-France                                  | 2027                       | 1400   | /                  | 400                          | 140 subsea 20<br>underground                          | /                         | https://gridlinkinterconnector.com/                                                                                                                                                 |
| 41 | Borwin 6,<br>Germany                                    | 2027                       | 980    | ±320               | /                            | 190 subsea 45<br>underground                          | GEIRI/C-EPRI              | https://www.tennet.eu/news/tennet-awards-land-and-sea-<br>station-grid-connection-project-borwin6-international-consortium                                                          |
| 42 | Biscay Gulf Link,<br>France-Spain                       | 2027                       | 2200   | /                  | /                            | 300 subsea 80+13<br>underground                       | /                         | https://www.inelfe.eu/en/projects/bay-biscay                                                                                                                                        |
| 43 | Western-Isles<br>Scotland,<br>UK                        | 2027                       | 450    | ±320               | 150                          | 80 subsea 76<br>underground                           | /                         | <u>https://www.ssen-transmission.co.uk/projects/western-isles/</u><br><u>https://www.ssen-transmission.co.uk/media/6760/arnish-</u><br><u>booklet-artwork-digi-single-pages.pdf</u> |

|    | Name                               | Year<br>commissi-<br>onned |             | Voltage<br>DC (kV) |         | Transmission<br>Length (km)     | Converter<br>Manufacturer | Reference                                                                                                                                                                                                                                                                           |
|----|------------------------------------|----------------------------|-------------|--------------------|---------|---------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44 | Hornsea 3,<br>UK                   | 2027                       | 2 x<br>1320 | ±320               | 66/400  | 120 subsea                      | Hitachi Energy            | https://www.hitachienergy.com/news/press-<br>releases/2022/07/hitachi-energy-wins-order-to-connect-one-of-<br>the-world-s-largest-offshore-wind-farms-to-the-uk-power-<br>grid?utm_source=linkedin&utm_medium=social&utm_campaign=<br>bu:global-~cc:global-~cn:grid-integrationhvdc |
| 45 | Centre Manche,<br>France           | 2028                       | 2x1250      | ±320               | /       | /                               | /                         | https://www.eoliennesenmer.fr/sites/eoliennesenmer/files/fichier<br>s/2022/01/Perspectivesdedeveloppement_reseauelectriqueenmer<br>facadenormande_janvier2022_0.pdf                                                                                                                 |
| 46 | Marinus Link stage<br>1, Australia | 2028                       | 750         | /                  | /       | 255 subsea 90<br>underground    | /                         | https://www.marinuslink.com.au/<br>https://www.offshore-energy.biz/aemo-marinus-link-should-be-<br>built-urgently-to-deliver-clean-energy/                                                                                                                                          |
| 47 | BorWin 4,<br>Germany               | 2028                       | 900         | ±320               | /       | 130 subsea 130<br>underground   | Siemens Energy            | https://press.siemens-energy.com/global/en/pressrelease/wind-<br>power-18-million-people-siemens-energy-wins-largest-grid-<br>connection-order-date<br>https://www.amprion.net/Press/Press-Detail-Page 44160.html                                                                   |
| 48 | DolWin4,<br>Germany                | 2028                       | 900         | 320                | /       | 60 subsea 150<br>underground    | Siemens Energy            | https://press.siemens-energy.com/global/en/pressrelease/wind-<br>power-18-million-people-siemens-energy-wins-largest-grid-<br>connection-order-date<br>https://www.amprion.net/Press/Press-Detail-Page 44160.html                                                                   |
| 49 | Higashi-Shimizu,<br>Japan          | 2028                       | 600         | /                  | 275     | Back-to-back                    | Hitachi Energy            | https://www.hitachienergy.com/about-us/case-studies/higashi-<br>shimizu                                                                                                                                                                                                             |
| 50 | Neuconnect,<br>UK-Germany          | 2028                       | 1400        | ±500               | 400     | 725 subsea                      | Siemens Energy            | https://neuconnect-interconnector.com/                                                                                                                                                                                                                                              |
| 51 | Nautilus,<br>UK-Belgium            | 2028                       | 1400        | /                  | /       | /                               | /                         | https://www.nationalgrid.com/national-grid-<br>ventures/interconnectors-connecting-cleaner-future/nautilus-<br>interconnector                                                                                                                                                       |
| 52 | Beacon Wind 1,<br>USA              | 2028                       | 1230        | /                  | /       | /                               | /                         | https://www.rechargenews.com/wind/equinor-and-bp-to-<br>pioneer-high-voltage-offshore-wind-export-lines-in-us-atlantic/2-<br><u>1-1012225</u>                                                                                                                                       |
| 53 | FAB Link,<br>UK-France             | 2028                       | 2x700       | ±320               | 400/400 | 170 subsea 15+25<br>underground | /                         | http://www.fablink.net/                                                                                                                                                                                                                                                             |
| 54 | Eastern Green Link<br>2,<br>UK     | 2029                       | 2000        | ±525               | /       | 440 subsea 67<br>underground    | /                         | https://www.ssen-transmission.co.uk/projects/eastern-green-<br>link-2/                                                                                                                                                                                                              |
| 55 | Xlinks,<br>Moroco-UK               | 2029                       | 1800        | /                  | /       | 3800 subsea                     | /                         | https://xlinks.co/                                                                                                                                                                                                                                                                  |
| 56 | BalWin3,<br>Germany                | 2029                       | 2000        | ±525               | /       | /                               | /                         | https://www.tennet.eu/2gw-program-0                                                                                                                                                                                                                                                 |
| 57 | BalWin1,<br>Germany                | 2029                       | 2000        | ±525               | /       | 140 subsea 80<br>underground    | /                         | https://www.offshorewind.biz/2021/06/11/tennet-issues-<br>offshore-wind-contract-notices/                                                                                                                                                                                           |
| 58 | BalWin4,<br>Germany                | 2029                       | 2000        | ±525               | /       | /                               | /                         | https://www.tennet.eu/2gw-program-0                                                                                                                                                                                                                                                 |

|    | Name                                                           | Year<br>commissi-<br>onned |        | Voltage<br>DC (kV) |                              | Transmission<br>Length (km)   | Converter<br>Manufacturer | Reference                                                                                                                                                                      |
|----|----------------------------------------------------------------|----------------------------|--------|--------------------|------------------------------|-------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 59 | BalWin2,<br>Germany                                            | 2030                       | 2000   | ±525               | /                            | /                             | /                         | https://www.tennet.eu/2gw-program-0                                                                                                                                            |
| 60 | Marinus Link stage<br>2,<br>Australia                          | 2030                       | 750    | /                  | /                            | 255 subsea 90<br>underground  | /                         | https://www.marinuslink.com.au/<br>https://www.offshore-energy.biz/aemo-marinus-link-should-be-<br>built-urgently-to-deliver-clean-energy/                                     |
| 61 | IJMUiden Alpha,<br>Netherlands                                 | 2030                       | 2000   | ±525               | /                            | /                             | /                         | https://netztransparenz.tennet.eu/tinyurl-storage/detail/tennet-<br>develops-first-2gw-offshore-grid-connection-with-suppliers/                                                |
| 62 | Eurolink,<br>UK-Netherlands                                    | 2030                       | 1400   | /                  | /                            | /                             | /                         | https://www.nationalgrid.com/national-grid-<br>ventures/interconnectors-connecting-cleaner-future-old                                                                          |
| 63 | Altantic Shore 1<br>(Altantic ECC),<br>USA                     | 2030                       | 1510   | ±500               | 66 to 150<br>/ 230 to<br>275 | 40 subsea 19<br>underground   | /                         | https://www.boem.gov/sites/default/files/documents/renewable-<br>energy/state-activities/Atlantic-Shores-COP-Volume-1-Project-<br>Description.PDF                              |
| 64 | IJMUiden Beta,<br>Netherlands                                  | 2030                       | 2000   | ±525               | /                            | /                             | /                         | https://netztransparenz.tennet.eu/tinyurl-storage/detail/tennet-<br>develops-first-2gw-offshore-grid-connection-with-suppliers/                                                |
| 65 | East Anglia 3,<br>UK                                           | 2030                       | 1400   | /                  | /                            | /                             | Siemens Energy            | https://www.offshore-mag.com/renewable-<br>energy/article/14204028/aker-solutions-siemens-energy-to-<br>deliver-uk-north-sea-east-anglia-three-offshore-wind-hvdc-<br>stations |
| 66 | Atlantic<br>SuperConnection,<br>Iceland-UK                     | 2030                       | 1300   | /                  | /                            | 1500 subsea                   | /                         | https://atlanticsuperconnection.com/                                                                                                                                           |
| 67 | LanWin1,<br>Germany                                            | 2031                       | 2000   | ±525               | 380                          | 170 subsea 220<br>underground | /                         | https://offshore.amprion.net/Offshore-Projekte/LanWin1-<br>LanWin3/                                                                                                            |
| 68 | LanWin3,<br>Germany                                            | 2033                       | 2000   | ±525               | 380                          | 160 subsea 230<br>underground | /                         | https://offshore.amprion.net/Offshore-Projekte/LanWin1-<br>LanWin3/                                                                                                            |
| 69 | LanWin5,<br>Germany                                            | 2035                       | 2000   | ±525               | /                            | approx. 500<br>underground    | /                         | https://data.netzausbau.de/2035-<br>2021/NEP2035_Bestaetigung.pdf                                                                                                              |
| 70 | SENER-BC,<br>Mexico                                            | Pre-tender                 | 1500   | ±500               | /                            | 700 underground               | /                         | https://www.whitecase.com/insight-alert/mexicos-first-<br>transmission-ppp-tender                                                                                              |
| 71 | HIP Atlantic Project,<br>USA                                   |                            |        | /                  | /                            | /                             | /                         | https://www.4coffshore.com/news/102c000-mw-wind-project-<br>planned-for-north-atlantic-nid23555.html                                                                           |
| 72 | Aquind,<br>UK-France                                           | In planning                | 2x1000 | ±320               | 400                          | 242 subsea                    | /                         | http://aquind.co.uk/                                                                                                                                                           |
|    | Schleswig-Holstein /<br>Mecklenburg-<br>Vorpommern,<br>Germany |                            |        | ±525               | /                            | 200 underground               | /                         | https://www.50hertz.com/en/News/Details/12105/50hertz-and-<br>tennet-to-jointly-bring-wind-power-from-the-north-sea-into-the-<br>extra-high-voltage-grid-for-the-first-time    |
| 74 | Grain Belt Express,<br>USA                                     | In planning                | 4000   | /                  | /                            | 1280 underground              | /                         | https://grainbeltexpress.com/                                                                                                                                                  |
| 75 | AWC,<br>USA                                                    | Being<br>considered        | 1000   | ±320               | /                            | Multi-terminal<br>subsea      | /                         | https://www.transmissionhub.com/articles/transprojects/atlantic-<br>wind-connection                                                                                            |

|    | Name                                 | Year<br>commissi-<br>onned |       | Voltage<br>DC (kV) |     | Transmission<br>Length (km) | Converter<br>Manufacturer | Reference                             |
|----|--------------------------------------|----------------------------|-------|--------------------|-----|-----------------------------|---------------------------|---------------------------------------|
| 76 | Greenconnector,<br>Switzerland-Italy | Being<br>considered        | 1000  | ±400               | /   | 150 underground             | /                         | http://www.greenconnector.it/         |
| 77 | Lake Erie,<br>USA                    | Being<br>considered        | 1000  | /                  | /   | 117 subsea                  | /                         | https://www.itclakeerieconnector.com/ |
| 78 | Tres Amigas,<br>USA                  | Being<br>considered        | 3x750 | ±300               | 345 | Back-to-back                | /                         | http://www.tresamigasllc.com/         |

#### Disclaimer

RTEi endeavours to provide as accurate information as possible in this newsletter. However, RTEi cannot be held responsible for errors. RTEi assume no liability for the use made of the content of this newsletter. All rights are reserved by RTE international, unless otherwise stated. Any alteration or modification of all or part of this newsletter, in any form or by any means, is prohibited, without the prior written consent of RTEi.

